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A lattice-dynamical formulation of the anisotropic vibration tensors of the atoms in a crystal is presented 
which may contribute to a better understanding of how the interatomic thermal coupling is expressed 
in the anisotropic temperature factors. 

Introduction 

In many instances the atoms in a crystal are linked by 
strong forces so that one may expect the thermal mo- 
tions of the individual atoms to be coupled. An obvious 
example is given by the rigid-body motions of largely 
rigid molecules. The Debye-Waller factor, however, 
only refers to one particular atom and there are no 
cross terms in the expressions for the structure factor 
and the Bragg intensity which would explicitly ac- 
count for the coupling of the thermal motions of dif- 
ferent atoms in the unit cell. On the other hand, the 
good results obtained with many molecular structures, 
which have been refined with thermal rigid-body par- 
ameters, show that the Debye-Waller factor is appro- 
priate in its present form. This means that the coupling 
of the thermal motions of different atoms in the crystal 

is correctly accounted for by the structure factor and 
thus by the Debye-Waller factors of the individual 
atoms. How does this take place? 

In the historical context our problem may be pic- 
tured as follows. In 1913 Debye derived the temperature 
factors by assuming that the motions of the different 
atoms in the crystal are not coupled. After becoming 
acquainted with Born & yon Karman's (1913) paper 
on the dynamics of crystal lattices, in which the inter- 
atomic forces were taken into account, Debye (1914) 
derived the temperature factor anew. The surprising 
result was that the temperature factor for the Bragg 
intensities did not change its form [of. James (1948), 
the derivations in Chapters I, 3b and V,1]. On the 
other hand, Faxen (1918) was able to show that the 
expression for the thermal diffuse scattering changed 
pronouncedly by introducing the interatomic forces 
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into the calculation. For the Debye-Waller factors, 
however, the apparent paradox arose that the same 
formalism held for two different physical situations: 
coupled and uncoupled thermal motions of the atoms. 
That this is nevertheless true will be illustrated in this 
paper. 

A joint representation-of the atomic vibration" tensors 

We will begin with the lattice-dynamical expression for 
the Debye-Waller factor as it is known in the literature, 
e.g. Cochran & Cowley (1967), equation (14.4). Let 
e -~r  be the temperature factor for the rth atom, then 

1 h__~j(q)_ 
M r ( Q ) -  2mrN ~ [Q " og~(q) " n(qJ)+½)'  (1) 

where the symbols have the following meanings: 
Q=2nh ,  h=vector  in the reciprocal lattice, 
q: wave vector of a lattice wave, 
j =  1 . . .  3n: index to the branches of q, 
n: number of atoms in the unit cell, 
e(rlqj): vector of polarization of mode'q j, which spe- 

cifies the motions of atom r in this mode, 
h: Planck's constant h divided by 2n, 
ogj(q): frequency of mode qj times 2n, 
~(qj): mean quantum number of mode qj in thermal 

equilibrium. 
mr: mass of atom r, 
N:  number of cells in the crystal. 

If one refers h = Q/2n to an orthonormal basis, mul- 
tiplying out [Q.  e(rlqj)] z gives nine terms, 2nZh~hk, in 
the Debye-Waller factor 

exp (--2n 2 ~ Utrkh,hk). (2) 
t/¢ 

i, k = 1,2, 3 denote the directions of space. The. Carte- 
sian components U~ k of the symmetric tensor Ur have 
the dimension A 2, whereas the Cartesian components 
h~ have the dimension A.-I. With the energy 

E(qj)  = hcoj(q)[a(qj) + ½] 

= ½hogj(q) coth/hog~(q) ~ 
\ 2k~T ] (3) 

of the mode qj in thermal equilibrium, one obtains 
from equations (1), (2), and (3) 

1 x" E(qj)  U~ k -  
2turn ~ og~(q) 

x [e,(rlqj)e~(rlqj) + e~(rlqj)ek(rlqj)]. (4) 

The asterisk denotes the conjugate complex quantity. 
(In tensor notation the indices i and k in ei and ek should 
be superscripts. However, we do not attach any ten- 
sorial meaning to the position of the indices in this 
paper.) kB is Boltzmann's constant and T the absolute 
temperature. From equations (3) and (4) we obtain an 

expression for the case i=k,  which has already been 
given by Maradudin, Montroll and Weiss [1963, equa- 
tion (7.3.5)]. 

Because equation (4) refers only to one single atom, 
its form does not permit any conclusions regarding 
the question of the coupling of the thermal motions 
of different atoms in the unit cell. Thus we have to 
search for an expression which comprises all atoms of 
the unit cell. We shall show that such an expression 
can be derived in terms of the dynamical matrices of 
the crystal and that it allows us to discuss our introduc- 
tory question. 

In order to keep the equations concise we first use 
the high temperature approximation 

E(qj)=kBT (5) 

and extend the results thus obtained below. We insert 
equation (5) into (4) and also make use of the fact 
that the el(rlqj) are the components of the eigenvectors 
which belong to the eigenvalues og~(q) of the mass- 
normalized dynamical matrices M(q). These matrices 
are hermitian and of order 3n x 3n, cf. e.g. Cochran & 
Cowley [1967, equations (5.8) and (5.11)]. Hence we 
build up unitary matrices R(q) of order 3n x 3n with 
the elements ei(rlqj) and diagonal matrices A(q) of 
order 3n x 3n with elements co~(q). Then 

M = R A R  (6) 

holds for all wave vectors q, with R = R  -1, i.e. R is 
unitary ( ~  denotes the conjugate complex transpose 
matrix, - 1  the inverse). From equation (6) follows 

M - I = R A  -1 R .  (7) 

Since M and M -1 are mass normalized we multiply 
equation (4) by the factor m, and now introduce a 
mass-normalized mean-square amplitude matrix D of 
order 3n x 3n. The 3 x 3 diagonal blocks of D are the 
matrices m,U,, the off-diagonal blocks are 3 x 3 ma- 
trices l/m---7~ U,s which cannot be determined from 
diffraction data. With the use of equation (5), the ex- 
tension of equation (4) to a 3n x 3n matrix expression 
for the n atoms in the unit cell is 

D -  kBT 
2N ~ [M-l (q)+M*-l (q) ]  " (8) 

Now we remove the mass normalization in the vibra- 
tion tensors by means of a transformation Q. Q is 
diagonal of order 3nx 3n and has three elements 
1/1/~-~, for the rth atom. With 

and 
U = Q D Q  r (9a) 

L - I = Q M - 1 Q  r (9b) 

we obtain by analogy with equation (8) 

U kBT 
= -2~- ~ [L- l (q)+ L*-l(q)] .  

q 
(10a) 
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U is a 3n x 3n mean-square amplitude matrix in A 2 
units, and L the dynamical matrix which is not mass 
normalized. Since there is a vector - q  to each wave 
vector q we can shorten equation (10a) in the sum over 
all wave vectors to 

U= kBT N- ~ L-l (q)  " (lOb) 
q 

So far, equations (2) and (10) have been referred to a 
Cartesian coordinate system; they are, however, valid 
in any coordinate system. In equation (10) the 3 x 3 
diagonal blocks are the vibration tensors U, of equa- 
tion (2). The dynamical matrices L(q) contain the inter- 
atomic force constants for the various couples of atoms 
in the crystal, of. e.g. Cochran & Cowley [1967, equa- 
tions (5.8) and (5.11)]. Thus the direct interactions be- 
tween two reference atoms r and s in one unit cell 
(r#s) and in different unit cells are expressed in the 
off-diagonal blocks of the dynamical matrices L(q). 
If there is no interaction among all couples of atoms 
in the crystal, which are represented by the atoms r and 
s in the unit cell, then the off-diagonal blocks r,s of 
the matrices L(q) are zero for all wave vectors q. 

Our introductory question may now be answered as 
follows: in equation (10), the mean-square amplitude 
matrix U is proportional to the sum of the inverse dy- 
namical matrices L(q). Hence the information, con- 
cerning the interactions of atoms r and s in the crystal, 
contained in the off-diagonal blocks of the matrices 
L(q), is transferred into the diagonal blocks U ,  r =  
1 . . .  n, of the matrix U by the process of matrix in- 
version. No matter what the actual values of the off- 
diagonal blocks of the matrices L(q) may be they never- 
theless affect the actual values of the vibration tensors 
U,. If there is no interaction among any atoms which 
are not translationally identical, then the matrices L(q) 
are all block-diagonal and so is the matrix U; hence, 
in this case the vibration tensors U~ express the mo- 
tions of n independent Bravais arrays. Thus, by inter- 
preting the equations (10), we see why the Debye- 
Waller factors of the individual atoms are sufficient to 
cope with any situation of coupling in the motions of 
the atoms in the crystal. 

Extension to low temperatures 

In the case of low temperatures T or high frequencies 
cos(q), our previous discussion remains essentially val- 
id although some modifications occur in the equations. 
These modifications might be introduced by using the 
series expansion of the coth function in equation (3); 
the corresponding expansion in terms of force con- 
stant matrices was first given by Cyvin (1968). The dis- 
advantage of this expansion lies in the fact that it is 
only valid in the range 

ho) 
........... < n ,  (11) 

2knT 

thus, in particular, it does not hold for T = 0 ° K  and 
at room temperature for frequencies higher than about 
1270 cm-l .  Therefore we use a different approach: we 
shall show that there is a matrix representation which 
corresponds to equation (10) but which carries a matrix 
product L -~ ~ instead o fL  -1. We insert E'(qj) of equa- 
tion (3) into equation (4) and define a 3n × 3n diagonal 
matrix F(q) with elements Fj(q) = E(qj) .  Then in place 
of the equations (7) and (8) we obtain 

D =  1 N - ~ (RA-'FR+ R*A-1FP,*)q. (12) 

Now, for each wave vector q 

RA-  W~ = R A - I ~ R F ~  = M - I R F ~ ,  (13) 

and we remove the mass normalization by a transfor- 
mation Q, as given by equation (9b), to obtain 

QM-1RFIS.Qr = L - l { Q r - 1 R F ( Q r - 1 R ) - 1  } 

= L-  lg~ . (14) 

fl,  the expression in curly brackets, is not hermitian. 
It has the dimension of energy. Instead of equation 
(10b) we finally obtain 

1 
U =  - A ~  L- ' (q ) f l (q ) .  (15) 

Equation (15) is valid for all temperatures and fre- 
quencies. For T > 0 ° K  one may put ~(q)=kBT~'(q) 
which leads to a formulation that corresponds in 
greater detail to equation (10b). For high temperatures 
f l '  converges towards the unit matrix. Although in- 
troducing the matrix f l  into equation (15) modifies the 
terms in the sum over all q, our discussion of the 
mechanism of the coupling is not essentially invalidated 
since the inversion L ~ L -1 is not annulled by the 
factor ft. 

Interpretation of the atomic temperature factors 

In section 2 we have shown that the coupling of the 
thermal motions of a reference atom r in the unit cell 
with the motions of the other atoms in the crystal is 
expressed in the vibration tensor U,. Thus we may re- 
gard the vibration tensor U, as summing up the con- 
certed dynamical impacts of the 'environments' of the 
rth atom in the crystal. What is missing, however, in 
the vibration tensor U, is a detailed account of how 
the motions of the atom r are coupled with the motions 
of a neighbouring atom s in the unit cell. This infor- 
mation is contained in the 3 × 3 off-diagonal blocks 
U,s of the matrix U. Although these blocks are uni- 
quely defined by the dynamical matrices of the crystal 
they cannot be determined by experiment. For in the 
equations for X-ray scattering the explicit coupling 
terms, referring to different atoms in the crystal, do 
not enter into the expression for the lattice spectra but 
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only into the expression for the thermal diffuse scatter- 
ing, cf. Cochran & Cowley (1967, equation 14.3). Al- 
though the off-diagonal blocks U,s cannot be deter- 
mined experimentally they can nevertheless be used to 
formulate the equations for the thermal bond-length 
correction in lattice-dynamical terms, which we shall do 
in a forthcoming paper. 

In order to achieve a more detailed interpretation of 
the tensors U, it is thus necessary to develop dynamical 
models which describe the average motions of the 
atoms in the unit cell. Such models can be suggested 
by chemical information and the details of the given 
static structure. The models should then explain the 
observed values of the vibration components U~ k to a 
certain extent, and depending how correct, complete 
and accurate the model is, one obtains information on 
the thermal coupling of different atoms. As a rule such 
models will only be rough approximations, and in 
many cases we have no (external) means to prove that 
they are correct and are the only ones possible. The 
models may easily be incorrect when the components 
U~ k are not pronouncedly anisotropic or when the 
number of determined components U, ~k is too small. 
(A further source of error is, of course, given by the 
often low accuracy with which the vibration compo- 
nents are determined.) 

The simplest 'models' which were applied in the past 
only imply that magnitude and direction of  the prin- 
cipal vibration components of an atom fit well to the 
geometrical arrangement of the neighbouring atoms. 
This has been found to hold with many structures. 
Thus with layer structures, the smallest vibration am- 
plitudes of atoms in the layer are often parallel to the 
layer whereas the largest ones are perpendicular to it. 
Similarly, with many inorganic structures the principal 
vibration amplitudes are found to point in distinct di- 
rections of the coordination polyhedra, and the mag- 
nitudes of the principal vibrations are found to corres- 
pond to the free space left in those directions. As an 
example of a more involved dynamical model derived 
from the static structure we quote Megaw's (1970) anal- 
ysis of the dynamics of the calcite structure, which ex- 

plains the unexpected directions of the largest princi- 
pal vibration amplitudes of the oxygen atoms. A model 
which has frequently been used to calculate bond- 
length corrections, is the riding model proposed by 
Busing & Levy (1964). All these models suffer from 
the fact that they are established purely from structural 
evidence and that no external (numerical) checks are at 
our disposal. An exception in this regard is the model 
of the rigid-body vibrations which can often be ap- 
plied to nearly rigid molecules or ions. Since this model 
can be described by an explicit set of appropriate pa- 
rameters which can be refined from the components 
U~ k of the atoms of the molecule or from intensity data, 
there are several criteria which allow one to examine 
the validity of the rigid-body model on a numerical 
basis, see e.g. Cruickshank, Pilling, Bujosa, Lovell & 
Truter (1961); Burns, Ferrier & McMullan (1968); and 
Pawley (1972). 
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